mamba心脏疾病诊断
1. medmamba复现
想首先尝试一下medmamba的实验复现,用做后续的基础架构


是二维的,不好改,还是改改之前的分割网络看看
2. echo-mi实验
2.1 idea
使用双切面(二腔室+四腔室)超声心动图数据训练Mamba模型诊断早期心梗的需求,设计了一个创新性的双路径时空融合Mamba架构(Dual-Path Spatiotemporal Fusion Mamba, DPSF-Mamba)。该架构针对性解决多切面心脏超声的时空特征融合问题,核心思路如下:
一、核心改造思路
双路径异构特征提取
独立编码路径:为二腔室(2C)和四腔室(4C)切面分别设计专用Mamba块,适应不同视角的局部结构特征。
2C路径:聚焦左心室前壁、心尖部运动异常(早期心梗敏感区域)。

4C路径:捕获室间隔、侧壁运动及整体心室协调性(诊断关键指标)。

动态门控融合模块(DGFM):引入可学习的门控权重,自适应融合双路径特征(公式示例):
其中 为可训练权重, 为Sigmoid函数,实现特征重要性动态分配。
多任务联合优化分类头
//todo
二、创新技术优势
| 模块 | 传统Mamba局限 | DPSF-Mamba改进 | 临床价值 |
|---|---|---|---|
| 多切面处理 | 单一路径忽视视角差异 | 双路径异构编码 + 动态融合 | 减少视角偏差,提升小病灶敏感性 |
| 时空特征利用 | 长序列建模但空间关联弱 | 时空切片重组 + 坐标注意力 | 同步捕捉运动异常与结构变形 |
| 数据效率 | 需大量标注数据 | 多任务学习共享特征 | 缓解超声标注稀缺问题 |
| 可解释性 | 黑盒决策 | 门控权重可视化切面贡献度 | 辅助医生理解AI诊断依据 |
三、预期效果验证方案
可解释性分析
绘制门控权重热力图(如下示例),验证模型对病变切面的关注度:
前壁梗死患者:4C切面权重峰值达0.83(主导诊断)
心尖梗死患者:2C切面权重升至0.79
四、潜在挑战与解决方案
挑战1:双切面数据不全(如部分患者缺失一个切面)
方案:引入跨切面知识蒸馏,用完整数据训练教师网络指导单切面学生网络。
挑战2:超声伪影干扰
方案:在Mamba前端加入对抗去噪模块(如Conditional GAN)。
2.2 faec_advance实验
| name | acc | auc | f1 | precision | recall | specificity |
|---|---|---|---|---|---|---|
| faec | 0.71875 | 0.7013 | 0.3077 | 1.0 | 0.1818 | 1.0 |
camus 多切面
| name | acc | auc | f1 | precision | recall | specificity |
|---|---|---|---|---|---|---|
| Experiment_6 fold_1 | 0.8125 | 0.858333 | 0.769230 | 0.714286 | 0.833333 | 0.8 |
| Experiment_6 fold_2 | 0.75 | 0.741666 | 0.555555 | 0.833333 | 0.416666 | 0.949999 |
| Experiment_6 fold_3 | 0.8125 | 0.899999 | 0.699999 | 0.875 | 0.583333 | 0.949999 |
| Experiment_6 fold_4 | 0.78125 | 0.852814 | 0.588235 | 0.833333 | 0.454545 | 0.952380 |
| Experiment_6 fold_5 | 0.71875 | 0.701298 | 0.307692 | 1.0 | 0.1818 | 1.0 |
| Experiment_6 avg | 0.775 | 0.8108 | 0.5841 | 0.8512 | 0.4939 | 0.9305 |
3. MIMamba实验
改造之前的分割网络的mamba用于分类
3.1 camus数据集
camus A2C的实验
| name | acc | auc | f1 | precision | recall |
|---|---|---|---|---|---|
| Experiment_4 fold_1 | 0.375 | 0.533333 | 0.545454 | 0.375 | 1.0 |
| Experiment_4 fold_2 | 0.34375 | 0.558441 | 0.511628 | 0.34375 | 1.0 |
| Experiment_5 fold_1 | 0.75 | 0.699999 | 0.636364 | 0.699999 | 0.583333 |
| Experiment_5 fold_2 | 0.71875 | 0.670995 | 0.571428 | 0.6 | 0.545454 |
| Experiment_5 fold_3 | 0.71875 | 0.636363 | 0.470588 | 0.571428 | 0.4 |
| Experiment_5 fold_4 | 0.71875 | 0.590909 | 0.470588 | 0.571428 | 0.4 |
| Experiment_5 fold_5 | 0.625 | 0.490909 | 0.4 | 0.4 | 0.4 |
| Experiment_5 avg | 0.70625 | 0.617835 | 0.509794 | 0.568571 | 0.425757 |
camus 多切面
| name | acc | auc | f1 | precision | recall | specificity |
|---|---|---|---|---|---|---|
| Experiment_7 fold_1 | 0.84375 | 0.837499 | 0.761904 | 0.888888 | 0.666666 | 0.949999 |
| Experiment_7 fold_2 | 0.75 | 0.708333 | 0.555555 | 0.833333 | 0.416666 | 0.949999 |
| Experiment_7 fold_3 | 0.8125 | 0.8375 | 0.727272 | 0.8 | 0.666666 | 0.899999 |
| Experiment_7 fold_4 | 0.8125 | 0.818181 | 0.75 | 0.692307 | 0.818181 | 0.809523 |
| Experiment_7 fold_5 | 0.71875 | 0.714285 | 0.307692 | 1.0 | 0.181818 | 1.0 |
| Experiment_7 (监控acc) | 0.7875 | 0.7832 | 0.6205 | 0.8429 | 0.5500 | 0.9219 |
| Experiment_8 fold_1 | 0.65625 | 0.875 | 0.266666 | 0.666666 | 0.166666 | 0.949999 |
| Experiment_8 fold_2 | 0.75 | 0.816666 | 0.666666 | 0.666666 | 0.666666 | 0.8 |
| Experiment_8 fold_3 | 0.71875 | 0.858333 | 0.571428 | 0.666666 | 0.5 | 0.85 |
| Experiment_8 fold_4 | 0.65625 | 0.8658 | 0.0 | 0 | 0 | 1 |
| Experiment_8 fold_5 | 0.6875 | 0.796536 | 0.583333 | 0.538461 | 0.636363 | 0.714285 |
| Experiment_8 (监控auc) | ||||||
| Experiment_9 fold_1 | 0.75 | 0.879166 | 0.5 | 1.0 | 0.333333 | 1.0 |
| Experiment_9 fold_2 | 0.65625 | 0.695833 | 0.153846 | 1.0 | 0.083333 | 1.0 |
| Experiment_9 fold_3 | 0.65625 | 0.770833 | 0.153846 | 1.0 | 0.083333 | 1.0 |
| Experiment_9 fold_4 | 0.6875 | 0.649350 | 0.166666 | 1.0 | 0.090909 | 1.0 |
| Experiment_9 fold_5 | 0.75 | 0.761904 | 0.5 | 0.8 | 0.363636 | 0.952380 |
| Experiment_9 (precision) | ||||||
| Experiment_10 fold_1 | 0.84375 | 0.875 | 0.814814 | 0.733333 | 0.916666 | 0.8 |
| Experiment_10 fold_2 | 0.78125 | 0.75 | 0.695652 | 0.727272 | 0.666666 | 0.85 |
| Experiment_10 fold_3 | 0.84375 | 0.85 | 0.761904 | 0.888888 | 0.666666 | 0.949999 |
| Experiment_10 fold_4 | 0.75 | 0.779220 | 0.692307 | 0.6 | 0.818181 | 0.714285 |
| Experiment_10 fold_5 | 0.625 | 0.675324 | 0.625 | 0.476190 | 0.909090 | 0.476190 |
| Experiment_10 (监控f1) | 0.7688 | 0.7859 | 0.7179 | 0.6851 | 0.7955 | 0.7581 |
| Experiment_11 fold_1 | 0.90625 | 0.85 | 0.869565 | 0.909090 | 0.833333 | 0.949999 |
| Experiment_11 fold_2 | 0.75 | 0.754166 | 0.714285 | 0.625 | 0.833333 | 0.699999 |
| Experiment_11 fold_3 | 0.78125 | 0.820833 | 0.740740 | 0.666666 | 0.833333 | 0.75 |
| Experiment_11 fold_4 | 0.75 | 0.744588 | 0.714285 | 0.588235 | 0.909090 | 0.666666 |
| Experiment_11 fold_5 | 0.65625 | 0.679653 | 0.645161 | 0.5 | 0.909090 | 0.523809 |
| Experiment_best | 0.8063 | 0.8129 | 0.7321 | 0.7512 | 0.7242 | 0.8547 |
| Experiment_15 fold_1 | 0.875 | 0.870833 | 0.846153 | 0.785714 | 0.916666 | 0.85 |
| Experiment_15 fold_2 | 0.8125 | 0.762499 | 0.769230 | 0.714285 | 0.833333 | 0.8 |
| Experiment_15 fold_3 | 0.84375 | 0.854166 | 0.761904 | 0.888888 | 0.666666 | 0.949999 |
| Experiment_15 fold_4 | 0.75 | 0.709956 | 0.6 | 0.666666 | 0.545454 | 0.857142 |
| Experiment_15 fold_5 | 0.75 | 0.718614 | 0.692307 | 0.6 | 0.818181 | 0.714285 |
| Experiment_15 | ||||||
| Experiment_18 fold_1 | 0.78125 | 0.725 | 0.72 | 0.6923 | 0.75 | 0.8 |
| Experiment_23 fold_1 | 0.78125 | 0.7625 | 0.6666 | 0.7777 | 0.5833 | 0.8999 |
| Experiment_24 fold_1 | 0.8125 | 0.8166 | 0.6999 | 0.875 | 0.5833 | 0.949999 |
| Experiment_25 fold_1 | 0.84375 | 0.862499 | 0.761904 | 0.888888 | 0.666666 | 0.949999 |
使用adaw
| name | acc | auc | f1 | precision | recall | specificity |
|---|---|---|---|---|---|---|
| Experiment_28 fold_1 | 0.8125 | 0.791666 | 0.75 | 0.75 | 0.75 | 0.85 |
| Experiment_29 fold_1 | 0.8125 | 0.7958 | 0.75 | 0.75 | 0.75 | 0.85 |
camus mi_mamba A2C和A4C路径
1 | |
| name | acc | auc | f1 | precision | recall | specificity |
|---|---|---|---|---|---|---|
| Experiment_26 fold_1 | 0.78125 | 0.766666 | 0.72 | 0.692307 | 0.75 | 0.8 |
换用 adaw
| name | acc | auc | f1 | precision | recall | specificity |
|---|---|---|---|---|---|---|
| Experiment_27 fold_1 | 0.8125 | 0.75 | 0.75 | 0.75 | 0.75 | 0.85 |
camus 多切面 MultiStageFusion
| name | acc | auc | f1 | precision | recall | specificity |
|---|---|---|---|---|---|---|
| Experiment_12 fold_1 | 0.8125 | 0.866666 | 0.699999 | 0.875 | 0.583333 | 0.949999 |
| Experiment_12 fold_2 | 0.75 | 0.720833 | 0.666666 | 0.666666 | 0.666666 | 0.8 |
| Experiment_12 fold_3 | 0.78125 | 0.75 | 0.631579 | 0.857142 | 0.5 | 0.949 |
| Experiment_13 fold_1 | 0.8125 | 0.754166 | 0.699999 | 0.875 | 0.583333 | 0.949999 |
| Experiment_14 fold_1 | 0.8125 | 0.891666 | 0.785714 | 0.6875 | 0.916666 | 0.75 |
camus 多尺度融合模型
| name | acc | auc | f1 | precision | recall | specificity |
|---|---|---|---|---|---|---|
| Experiment_17 fold_1 | 0.71875 | 0.695833 | 0.666666 | 0.6 | 0.75 | 0.699999 |
camus 分层融合模型mi_mamba_hierarchical_model
| name | acc | auc | f1 | precision | recall | specificity |
|---|---|---|---|---|---|---|
| Experiment_16 fold_1 | 0.78125 | 0.8208 | 0.7407 | 0.666666 | 0.833333 | 0.75 |
| Experiment_16 fold_2 | 0.6875 | 0.5208 | 0.375 | 0.75 | 0.25 | 0.9499 |
| Experiment_16 fold_3 | 0.75 | 0.8 | 0.6 | 0.75 | 0.5 | 0.8999 |
| Experiment_16 fold_4 | 0.75 | 0.6883 | 0.6 | 0.666666 | 0.545454 | 0.857142 |
| Experiment_16 fold_5 | 0.6875 | 0.580086 | 0.375 | 0.6 | 0.272727 | 0.904762 |
| Experiment_19 fold_1 | 0.75 | 0.758333 | 0.5555 | |||
| Experiment_20 fold_1 | 0.75 | 0.7333 | 0.6666 | 0.666666 | 0.666666 | 0.8 |
| Experiment_21 fold_1 | 0.78125 | 0.75 | 0.695652 | 0.727272 | 0.666666 | 0.85 |
| Experiment_22 fold_1 | 0.75 | 0.6875 | 0.5555 | 0.8333 | 0.416666 | 0.9499 |
| 0.75 | 0.6958 | 0.6 | 0.75 | 0.5 | 0.899999 | |
| 换用adaw | ||||||
| Experiment_30 fold_1 | 0.78125 | 0.708333 | 0.666666 | 0.777777 | 0.583333 | 0.899999 |
cross-ssm
| name | acc | auc | f1 | precision | recall | specificity |
|---|---|---|---|---|---|---|
| Experiment_32 fold_1 | 0.625 | 0.475 | 0 | 0 | 0 | 1 |
| Experiment_33 fold_1 | 0.78125 | 0.783333 | 0.666666 | 0.777777 | 0.583333 | 0.899999 |
| Experiment_34 fold_1 gate | 0.75 | 0.754166 | 0.636363 | 0.699999 | 0.583333 | 0.85 |
| Experiment_35 fold_1 gate w | 0.8125 | 0.804166 | 0.727272 | 0.8 | 0.666666 | 0.899999 |
| Experiment_36 fold_1 attn w | 0.75 | 0.720833 | 0.6 | 0.75 | 0.5 | 0.899999 |
| Experiment_37 fold_1 gate attn w | 0.8125 | 0.825 | 0.727272 | 0.8 | 0.666666 | 0.899999 |
| Experiment_ fold_1 attn gate w | 0.75 | 0.774999 | 0.636363 | 0.699999 | 0.583333 | 0.85 |
从上面的来看cross-ssm效果还可以,继续使用cross-ssm 验证camus填充方式
cross-ssm gate attn w
| name | acc | auc | f1 | precision | recall | specificity |
|---|---|---|---|---|---|---|
| Experiment_39 fold_1 repeat | 0.78125 | 0.729166 | 0.666666 | 0.777777 | 0.583333 | 0.899999 |
| Experiment_40 fold_1 interpolate | 0.84375 | 0.845833 | 0.8 | 0.769230 | 0.833333 | 0.85 |
| Experiment_40 fold_1 random_repeat | 0.75 | 0.754166 | 0.666666 | 0.666666 | 0.666666 | 0.8 |
| Experiment_41 fold_1 cyclic | 0.8125 | 0.791666 | 0.75 | 0.75 | 0.75 | 0.85 |
| Experiment_42 fold_1 reflect | 0.71875 | 0.745833 | 0.666666 | 0.6 | 0.75 | 0.699999 |
| Experiment_43 fold_1 noise | 0.75 | 0.745833 | 0.692307 | 0.642857 | 0.75 | 0.75 |
| Experiment_44 fold_1 random | 0.8125 | 0.783333 | 0.727272 | 0.8 | 0.666666 | 0.899999 |
hidden size降低到256再试试
| name | acc | auc | f1 | precision | recall | specificity |
|---|---|---|---|---|---|---|
| Experiment_60 fold_1 repeat | 0.75 | 0.766666 | 0.636363 | 0.699999 | 0.583333 | 0.85 |
| Experiment_61 fold_1 interpolate | 0.78125 | 0.829166 | 0.666666 | 0.777777 | 0.583333 | 0.899999 |
| Experiment_62 fold_1 random_repeat | 0.8125 | 0.8083 | 0.7692 | 0.714285 | 0.833333 | 0.8 |
| Experiment_63 fold_1 cyclic | 0.78125 | 0.716666 | 0.72 | 0.6923 | 0.75 | 0.8 |
| Experiment_64 fold_1 reflect | 0.78125 | 0.795833 | 0.666666 | 0.777777 | 0.583333 | 0.899999 |
| Experiment_65 fold_1 noise | 0.8125 | 0.795833 | 0.75 | 0.75 | 0.75 | 0.85 |
| Experiment_66 fold_1 random | 0.78125 | 0.7875 | 0.695652 | 0.727272 | 0.666666 | 0.85 |
cross-ssm
| name | acc | auc | f1 | precision | recall | specificity |
|---|---|---|---|---|---|---|
| Experiment_45 fold_1 | 0.84375 | 0.858333 | 0.761904 | 0.888888 | 0.666666 | 0.949999 |
| Experiment_45 fold_1 | 0.78125 | 0.8 | 0.72 | 0.692307 | 0.75 | 0.8 |
| Experiment_46 fold_1 | 0.71875 | 0.704166 | 0.666666 | 0.6 | 0.75 | 0.699999 |
| Experiment_47 fold_1 | 0.78125 | 0.758333 | 0.695652 | 0.727272 | 0.666666 | 0.85 |
| Experiment_48 fold_1 b8 | 0.78125 | 0.779166 | 0.72 | 0.692307 | 0.75 | 0.8 |
| Experiment_49 fold_1 b16 | 0.78125 | 0.758333 | 0.740740 | 0.666666 | 0.833333 | 0.75 |
| 增加模型feat[32, 64, 128, 256] | ||||||
| Experiment_50 fold_1 b8 | 0.78125 | 0.741666 | 0.740740 | 0.666666 | 0.833333 | 0.75 |
| Experiment_51 fold_1 b8 | 0.78125 | 0.7875 | 0.758620 | 0.647058 | 0.916666 | 0.699999 |
| Experiment_52 fold_1 b8 | 0.75 | 0.804166 | 0.714285 | 0.625 | 0.833333 | 0.699999 |
| 改回了填充到32帧 | ||||||
| Experiment_53 fold_1 | 0.78125 | 0.779166 | 0.72 | 0.6923 | 0.75 | 0.8 |
| Experiment_54 fold_1 | 0.78125 | 0.7625 | 0.666666 | 0.7777 | 0.583333 | 0.899999 |
| 增大hidden size 512 | ||||||
| Experiment_56 fold_1 | 0.71875 | 0.666666 | 0.666666 | 0.6 | 0.75 | 0.699999 |
| Experiment_57 fold_1 | 0.78125 | 0.729166 | 0.666666 | 0.777777 | 0.583333 | 0.899999 |
| hidden size 256 | ||||||
| Experiment_58 fold_1 | 0.78125 | 0.754166 | 0.740740 | 0.666666 | 0.833333 | 0.75 |
| hidden size 768 | ||||||
| Experiment_59 fold_1 | 0.78125 | 0.7875 | 0.6315 | 0.8571 | 0.5 | 0.9499 |
前面的损失都是bce
损失
| name | acc | auc | f1 | precision | recall | specificity |
|---|---|---|---|---|---|---|
| Experiment_67 fold_1 focal | 0.6875 | 0.770833 | 0.545454 | 0.6 | 0.5 | 0.8 |
| Experiment_68 fold_1 dice | 0.75 | 0.779166 | 0.6 | 0.75 | 0.5 | 0.899999 |
| Experiment_69 fold_1 bce_dice | 0.75 | 0.729166 | 0.636363 | 0.699999 | 0.583333 | 0.85 |
| Experiment_70 fold_1 tversky | 0.875 | 0.829166 | 0.846153 | 0.785714 | 0.916666 | 0.85 |
| Experiment_71 fold_1 asymmetric | 0.78125 | 0.766666 | 0.72 | 0.6923 | 0.75 | 0.8 |
tversky 完整实验
| name | acc | auc | f1 | precision | recall | specificity |
|---|---|---|---|---|---|---|
| Experiment_70 fold_1 | 0.875 | 0.829166 | 0.846153 | 0.785714 | 0.916666 | 0.85 |
| Experiment_70 fold_2 | 0.75 | 0.675 | 0.666666 | 0.666666 | 0.666666 | 0.8 |
| Experiment_70 fold_3 | 0.71875 | 0.691666 | 0.526315 | 0.714285 | 0.416666 | 0.899999 |
| Experiment_70 fold_4 | 0.71875 | 0.718614 | 0.608695 | 0.583333 | 0.636363 | 0.761904 |
| Experiment_70 fold_5 | 0.5625 | 0.597402 | 0.533333 | 0.421052 | 0.727272 | 0.476190 |
还是改为16帧吧
| name | acc | auc | f1 | precision | recall | specificity |
|---|---|---|---|---|---|---|
| Experiment_74 fold_1 | 0.84375 | 0.770833 | 0.782608 | 0.818181 | 0.75 | 0.899999 |
| Experiment_74 fold_2 | 0.6875 | 0.645833 | 0.375 | 0.75 | 0.25 | 0.949999 |
| Experiment_74 fold_3 | 0.6875 | 0.6875 | 0.5454 | 0.6 | 0.5 | 0.8 |
| Experiment_74 fold_4 | 0.78125 | 0.744588 | 0.666666 | 0.699999 | 0.636363 | 0.857142 |
| Experiment_74 fold_5 | 0.6875 | 0.670995 | 0.583333 | 0.538461 | 0.636363 | 0.714285 |
bce损失
| name | acc | auc | f1 | precision | recall | specificity |
|---|---|---|---|---|---|---|
| Experiment_75 fold_1 | 0.8125 | 0.7666 | 0.75 | 0.75 | 0.75 | 0.85 |
| Experiment_75 fold_2 | 0.6875 | 0.637499 | 0.444444 | 0.666666 | 0.333333 | 0.899999 |
| Experiment_75 fold_3 | 0.6875 | 0.612499 | 0.583333 | 0.583333 | 0.583333 | 0.75 |
| Experiment_75 fold_4 | 0.75 | 0.766233 | 0.555555 | 0.714285 | 0.454545 | 0.904761 |
| Experiment_75 fold_5 | 0.59375 | 0.683982 | 0.580645 | 0.449999 | 0.818181 | 0.476190 |
去掉模块
bce
| name | acc | auc | f1 | precision | recall | specificity |
|---|---|---|---|---|---|---|
| Experiment_76 fold_1 | 0.8125 | 0.8292 | 0.7273 | 0.8 | 0.6667 | 0.8999 |
| Experiment_76 fold_2 | 0.75 | 0.7083 | 0.6923 | 0.6429 | 0.75 | 0.75 |
| Experiment_76 fold_3 | 0.75 | 0.7916 | 0.6364 | 0.6999 | 0.5833 | 0.85 |
| Experiment_76 fold_4 | 0.78125 | 0.7359 | 0.6666 | 0.6999 | 0.6363 | 0.8571 |
| Experiment_76 fold_5 | 0.4375 | 0.5757 | 0.5263 | 0.3703 | 0.9090 | 0.1904 |
只加上gated
| name | acc | auc | f1 | precision | recall | specificity |
|---|---|---|---|---|---|---|
| Experiment_77 fold_1 | 0.6875 | 0.7375 | 0.6666 | 0.5555 | 0.8333 | 0.6 |
| Experiment_77 fold_2 | 0.7187 | 0.6666 | 0.64 | 0.6153 | 0.6666 | 0.75 |
| Experiment_77 fold_3 | 0.5937 | 0.5916 | 0.6285 | 0.4782 | 0.9166 | 0.4 |
| Experiment_77 fold_4 | 0.5625 | 0.6147 | 0.5882 | 0.4347 | 0.9090 | 0.3809 |
| Experiment_77 fold_5 |
只加上attn
| name | acc | auc | f1 | precision | recall | specificity |
|---|---|---|---|---|---|---|
| Experiment_78 fold_1 | 0.75 | 0.7541 | 0.6666 | 0.6666 | 0.6666 | 0.8 |
| Experiment_78 fold_2 | 0.71875 | 0.6916 | 0.64 | 0.6153 | 0.6666 | 0.75 |
| Experiment_78 fold_3 | 0.625 | 0.6208 | 0.6 | 0.5 | 0.75 | 0.55 |
| Experiment_78 fold_4 | 0.7187 | 0.5930 | 0.5263 | 0.625 | 0.4545 | 0.8571 |
| Experiment_78 fold_5 |
3.1.1 mamba+echoprime video
使用两个分支对两个切面的数据进行提取,echo_prime和mamba进行提取,最后一起送入分类器
mamba: A2C切面的数据
echo_prime: A4C切面的数据
融合: 通道拼接
| name | acc | auc | f1 | precision | recall | specificity |
|---|---|---|---|---|---|---|
| Experiment_79 fold_1 | 0.7813 | 0.7333 | 0.6667 | 0.7777 | 0.5833 | 0.90 |
| Experiment_79 fold_2 | 0.78125 | 0.774999 | 0.5882 | 1.0 | 0.4166 | 1.0 |
| Experiment_79 fold_3 | 0.875 | 0.9208 | 0.818181 | 0.899999 | 0.75 | 0.949999 |
| Experiment_79 fold_4 | 0.84375 | 0.839826 | 0.761904 | 0.8 | 0.727272 | 0.904761 |
| Experiment_79 fold_5 | 0.78125 | 0.757575 | 0.6666 | 0.699999 | 0.636363 | 0.857142 |
| Experiment_79 | 0.8125 |
保留2*2*2的空间结构
| name | acc | auc | f1 | precision | recall | specificity |
|---|---|---|---|---|---|---|
| Experiment_80 fold_1 | 0.78125 | 0.695833 | 0.666666 | 0.777777 | 0.5833 | 0.8999 |
| Experiment_80 fold_2 | 0.78125 | 0.787499 | 0.695652 | 0.727272 | 0.666666 | 0.85 |
| Experiment_80 fold_3 | 0.875 | 0.8958 | 0.846153 | 0.785714 | 0.916666 | 0.85 |
| Experiment_80 fold_4 | 0.84375 | 0.839826 | 0.782608 | 0.75 | 0.818181 | 0.857142 |
| Experiment_80 fold_5 | 0.8125 | 0.787878 | 0.6666 | 0.8571 | 0.5454 | 0.9523 |
| Experiment_80 | 0.8188 | 0.8014 | 0.7315 | 0.7796 | 0.7060 | 0.8818 |
保留4*4*4的空间结构
| name | acc | auc | f1 | precision | recall | specificity |
|---|---|---|---|---|---|---|
| Experiment_81 fold_1 | 0.8125 | 0.875 | 0.6999 | 0.875 | 0.5833 | 0.9499 |
| Experiment_81 fold_2 | 0.8125 | 0.775 | 0.7272 | 0.8 | 0.666666 | 0.899999 |
| Experiment_81 fold_3 | 0.875 | 0.879166 | 0.8333 | 0.8333 | 0.8333 | 0.8999 |
| Experiment_81 fold_4 | 0.84375 | 0.848484 | 0.7826 | 0.75 | 0.818181 | 0.857142 |
| Experiment_81 fold_5 | 0.84375 | 0.7922 | 0.7619 | 0.8 | 0.727272 | 0.904761 |
| Experiment_80 | 0.8375 | 0.8139 | 0.7610 | 0.8117 | 0.7257 | 0.9023 |
交换特征提取器
mamba: A4C切面的数据
echo_prime: A2C切面的数据
融合: 通道拼接
保留4*4*4的空间结构
| name | acc | auc | f1 | precision | recall | specificity |
|---|---|---|---|---|---|---|
| Experiment_82 fold_1 | 0.90625 | 0.879166 | 0.879999 | 0.846153 | 0.916666 | 0.899999 |
| Experiment_82 fold_2 | 0.78125 | 0.741666 | 0.695652 | 0.727272 | 0.666666 | 0.85 |
| Experiment_82 fold_3 | 0.8125 | 0.8666 | 0.7692 | 0.714285 | 0.8333 | 0.8 |
| Experiment_82 fold_4 | 0.90625 | 0.9220 | 0.842105 | 1.0 | 0.727272 | 1.0 |
| Experiment_82 fold_5 | 0.75 | 0.6666 | 0.5 | 0.8 | 0.363636 | 0.9523 |
| Experiment_82 | 0.8312 | 0.8152 | 0.7373 | 0.8175 | 0.6976 | 0.8805 |
学习率
| name | acc | auc | f1 | precision | recall | specificity |
|---|---|---|---|---|---|---|
| Experiment_83 fold_5 1e-4 | 0.71875 | 0.6320 | 0.3077 | 1.0 | 0.1818 | 1.0 |
| Experiment_84 fold_5 1e-6 | 0.78125 | 0.7445 | 0.5882 | 0.8333 | 0.454545 | 0.952380 |
| name | acc | auc | f1 | precision | recall | specificity |
|---|---|---|---|---|---|---|
| Experiment_84 fold_1 | 0.9375 | 0.904166 | 0.916666 | 0.916666 | 0.916666 | 0.949999 |
| Experiment_84 fold_2 | 0.78125 | 0.699999 | 0.72 | 0.692307 | 0.75 | 0.8 |
| Experiment_84 fold_3 | 0.84375 | 0.816666 | 0.8 | 0.769230 | 0.833333 | 0.85 |
| Experiment_84 fold_4 | 0.90625 | 0.8961 | 0.8571 | 0.8999 | 0.818181 | 0.952380 |
| Experiment_84 fold_5 | 0.78125 | 0.7445 | 0.5882 | 0.8333 | 0.454545 | 0.952380 |
| Experiment_84 95% | 0.8500 | 0.8249 | 0.7857 | 0.8148 | 0.7586 | 0.9020 |
3.1.2 mamba+echoprime text video
在mamba的decoder部分加入三层知识向量
mamba: A4C切面的数据
echo_prime: A2C切面的数据
融合: 通道拼接
保留4*4*4的空间结构 损失bce
| name | acc | auc | f1 | precision | recall | specificity |
|---|---|---|---|---|---|---|
| Experiment_102 fold_1 | 0.9375 | 0.895833 | 0.916666 | 0.916666 | 0.916666 | 0.949999 |
| Experiment_102 fold_2 | 0.78125 | 0.7374 | 0.6666 | 0.7777 | 0.5833 | 0.8999 |
| Experiment_102 fold_3 | 0.78125 | |||||
| Experiment_102 fold_4 | 0.875 | |||||
| Experiment_102 fold_5 | 0.75 | |||||
| Experiment_102 | 0.816 |
在mamba的decoder部分加入知识向量和echo prime视频提取部分都加入知识向量
学习率1e-5
| name | acc | auc | f1 | precision | recall | specificity |
|---|---|---|---|---|---|---|
| Experiment_103 fold_1 | 0.90625 | 0.8791 | 0.8799 | 0.8461 | 0.9166 | 0.8999 |
| Experiment_103 fold_2 | 0.78125 | |||||
| Experiment_103 fold_3 | 0.8125 | |||||
| Experiment_103 fold_4 | 0.875 | 0.8744 | 0.8 | 0.8888 | 0.7272 | 0.9523 |
| Experiment_103 fold_5 | 0.75 | |||||
| Experiment_103 | 0.825 |
损失asymmetric 学习率1e-5
| name | acc | auc | f1 | precision | recall | specificity |
|---|---|---|---|---|---|---|
| Experiment_104 fold_1 | 0.90625 | |||||
| Experiment_104 fold_2 | 0.78125 | |||||
| Experiment_104 fold_5 | 0.75 |
学习率
| name | acc | auc | f1 | precision | recall | specificity |
|---|---|---|---|---|---|---|
| Experiment_105 fold_5 1e-6 | 0.71875 | |||||
| Experiment_106 fold_5 1e-5 | 0.75 | |||||
| Experiment_107 fold_5 1e-4 | 0.71875 | |||||
| Experiment_108 fold_5 3e-4 | 0.75 | |||||
| Experiment_109 fold_5 3e-5 | 0.6875 | |||||
| Experiment_110 fold_5 3e-6 | 0.71875 |
效果好差,还是只加一层知识向量吧
| name | acc | auc | f1 | precision | recall | specificity |
|---|---|---|---|---|---|---|
| Experiment_111 fold_5 1e-6 | 0.75 |
在A4C的mamba的瓶颈层加入知识向量,同时A2C的video encoder也加入知识向量
| name | acc | auc | f1 | precision | recall | specificity |
|---|---|---|---|---|---|---|
| Experiment_112 fold_1 | 0.9375 | 0.925 | 0.916666 | 0.916666 | 0.916666 | 0.9499 |
| Experiment_112 fold_2 | 0.78125 | 0.7374 | 0.6666 | 0.7777 | 0.5833 | 0.8999 |
| Experiment_112 fold_3 | 0.78125 | 0.7958 | 0.72 | 0.6923 | 0.75 | 0.8 |
| Experiment_112 fold_4 | 0.875 | 0.8701 | 0.8181 | 0.818181 | 0.818181 | 0.9047 |
| Experiment_112 fold_5 | ||||||
| Experiment_112 |
b16
| name | acc | auc | f1 | precision | recall | specificity |
|---|---|---|---|---|---|---|
| Experiment_113 fold_1 | 0.90625 | 0.9208 | 0.8799 | 0.8461 | 0.9166 | 0.8999 |
| Experiment_113 fold_2 | 0.78125 | 0.725 | 0.72 | 0.6923 | 0.75 | 0.8 |
| Experiment_113 fold_3 | 0.75 | 0.8125 | 0.7142 | 0.625 | 0.8333 | 0.6999 |
| Experiment_113 fold_4 | 0.90625 | 0.8658 | 0.8571 | 0.8999 | 0.8181 | 0.9523 |
| Experiment_113 fold_5 | 0.78125 | 0.6666 | 0.6666 | 0.6999 | 0.6363 | 0.8571 |
| Experiment_113 |
交换A2C和A4C 十分拉跨
| name | acc | auc | f1 | precision | recall | specificity |
|---|---|---|---|---|---|---|
| Experiment_114 fold_1 | 0.75 | 0.8458 | 0.7333 | 0.6111 | 0.9166 | 0.6499 |
| Experiment_114 fold_2 | 0.8125 | 0.875 | 0.7692 | 0.7142 | 0.8333 | 0.8 |
| Experiment_114 fold_3 | 0.78125 | 0.825 | 0.7586 | 0.6470 | 0.9166 | 0.6999 |
| Experiment_114 fold_4 | 0.6875 | 0.7748 | 0.6428 | 0.5294 | 0.8181 | 0.6190 |
| Experiment_114 fold_5 | 0.75 | 0.6926 | 0.6666 | 0.6153 | 0.7272 | 0.7619 |
在mamba的decoder部分加入知识向量和echo prime video encoder 加入知识向量
mamba: A4C切面的数据
echo_prime: A2C切面的数据
融合: 通道拼接
保留4*4*4的空间结构 损失bce
学习率1e-6 b8
| name | acc | auc | f1 | precision | recall | specificity |
|---|---|---|---|---|---|---|
| Experiment_115 fold_1 | 0.9375 | 0.9125 | 0.9166 | 0.9166 | 0.9166 | 0.9499 |
| Experiment_115 fold_2 | 0.8125 | 0.7333 | 0.75 | 0.75 | 0.75 | 0.85 |
| Experiment_115 fold_3 | 0.8125 | 0.8041 | 0.7272 | 0.8 | 0.6666 | 0.8999 |
| Experiment_115 fold_4 | 0.90625 | 0.9004 | 0.8571 | 0.8999 | 0.8181 | 0.9523 |
| Experiment_115 fold_5 | 0.78125 | 0.7835 | 0.5882 | 0.8333 | 0.4545 | 0.9523 |
| Experiment_115 95% | 0.8500 | 0.8315 | 0.7778 | 0.8400 | 0.7241 | 0.9216 |
3.2 hmc数据集
简单的先尝试,效果非常的糟糕
| name | acc | auc | f1 | precision | recall | specificity |
|---|---|---|---|---|---|---|
| Experiment_73 fold_1 | 0.84375 | 0.884057 | 0.888888 | 0.909090 | 0.869565 | 0.777777 |
| Experiment_73 fold_2 | 0.75 | 0.744588 | 0.826086 | 0.759999 | 0.904761 | 0.454545 |
| Experiment_73 fold_3 | 0.6875 | 0.647058 | 0.75 | 0.652174 | 0.882352 | 0.466666 |
| Experiment_73 fold_4 | 0.6875 | 0.536796 | 0.807692 | 0.677419 | 1.0 | 0.090909 |
| Experiment_73 fold_5 |
3.2.1 mamba+echoprime video
mamba: A4C切面的数据
echo_prime: A2C切面的数据
融合: 通道拼接
保留4*4*4的空间结构
| name | acc | auc | f1 | precision | recall | specificity |
|---|---|---|---|---|---|---|
| Experiment_85 fold_1 | 0.90625 | 0.913043 | 0.936170 | 0.916666 | 0.956521 | 0.777777 |
| Experiment_85 fold_2 | 0.78125 | 0.787878 | 0.829268 | 0.85 | 0.8095 | 0.7272 |
| Experiment_85 fold_3 | 0.8125 | 0.8784 | 0.8235 | 0.8235 | 0.8235 | 0.8 |
| Experiment_85 fold_4 | 0.8125 | 0.8095 | 0.85 | 0.8947 | 0.8095 | 0.8182 |
| Experiment_85 fold_5 | 0.84375 | 0.878787 | 0.87179 | 0.9444 | 0.8095 | 0.9090 |
| Experiment_85 | 0.83125 |
损失改为tversky
| name | acc | auc | f1 | precision | recall | specificity |
|---|---|---|---|---|---|---|
| Experiment_86 fold_2 | 0.78125 | 0.813852 | 0.820512 | 0.888888 | 0.761904 | 0.818181 |
损失改为focal
| name | acc | auc | f1 | precision | recall | specificity |
|---|---|---|---|---|---|---|
| Experiment_87 fold_2 | 0.78125 | 0.8 | 0.8108 | 0.9375 | 0.714285 | 0.9090 |
损失改为dice
| name | acc | auc | f1 | precision | recall | specificity |
|---|---|---|---|---|---|---|
| Experiment_88 fold_2 | 0.78125 | 0.783549 | 0.820512 | 0.888888 | 0.761904 | 0.818181 |
损失改为bce_dice
| name | acc | auc | f1 | precision | recall | specificity |
|---|---|---|---|---|---|---|
| Experiment_89 fold_2 | 0.78125 | 0.805194 | 0.8205 | 0.8888 | 0.7619 | 0.818181 |
损失改为asymmetric
| name | acc | auc | f1 | precision | recall | specificity |
|---|---|---|---|---|---|---|
| Experiment_90 fold_1 | 0.90625 | 0.932367 | 0.936170 | 0.916666 | 0.956521 | 0.777777 |
| Experiment_90 fold_2 | 0.8125 | 0.8484 | 0.8571 | 0.8571 | 0.8571 | 0.7272 |
| Experiment_90 fold_3 | 0.84375 | 0.843137 | 0.864864 | 0.8 | 0.941176 | 0.733333 |
| Experiment_90 fold_4 | 0.8125 | 0.835497 | 0.85 | 0.894736 | 0.809523 | 0.818181 |
| Experiment_90 fold_5 | 0.84375 | 0.861471 | 0.883720 | 0.863636 | 0.904761 | 0.727272 |
| Experiment_90 | 0.84375 | 0.864175 | 0.888351 | 0.866628 | 0.891956 | 0.753332 |
改为交叉注意力融合
| name | acc | auc | f1 | precision | recall | specificity |
|---|---|---|---|---|---|---|
| Experiment_95 fold_1 | 0.84375 | 0.903381 | 0.883720 | 0.949999 | 0.826086 | 0.888888 |
| Experiment_95 fold_2 | 0.78125 | 0.779220 | 0.851063 | 0.769230 | 0.952380 | 0.454545 |
| Experiment_95 fold_3 | 0.8125 | |||||
| Experiment_95 fold_4 | 0.78125 | |||||
| Experiment_95 fold_5 | 0.8125 | 0.818181 | 0.857142 | 0.857142 | 0.857142 | 0.727272 |
| Experiment_95 | 拉跨 |
加权融合
| name | acc | auc | f1 | precision | recall | specificity |
|---|---|---|---|---|---|---|
| Experiment_96 fold_1 | 0.90625 | 0.937198 | 0.936170 | 0.916666 | 0.9565 | 0.7777 |
| Experiment_96 fold_2 | 0.8125 | 0.826839 | 0.857142 | 0.857142 | 0.857142 | 0.727272 |
| Experiment_96 fold_3 | 0.8125 | 0.882352 | 0.849999 | 0.739130 | 1.0 | 0.6 |
| Experiment_96 fold_4 | 0.8125 | 0.826839 | 0.85 | 0.894736 | 0.809523 | 0.818181 |
| Experiment_96 fold_5 | 0.84375 | 0.857142 | 0.883720 | 0.863636 | 0.904761 | 0.727272 |
| Experiment_96 |
Adaw优化器
| name | acc | auc | f1 | precision | recall | specificity |
|---|---|---|---|---|---|---|
| Experiment_97 fold_1 | 0.90625 | 0.927536 | 0.930232 | 1.0 | 0.869565 | 1.0 |
| Experiment_97 fold_2 | 0.78125 | 0.831168 | 0.810810 | 0.9375 | 0.714285 | 0.909090 |
| Experiment_97 fold_3 | 0.78125 | 0.882352 | 0.774193 | 0.857142 | 0.705882 | 0.866666 |
| Experiment_97 fold_4 | 0.8125 | 0.844155 | 0.842105 | 0.941176 | 0.761904 | 0.909090 |
| Experiment_97 fold_5 | 0.8125 | 0.883116 | 0.85 | 0.894736 | 0.809523 | 0.818181 |
| Experiment_97 |
SGD
| name | acc | auc | f1 | precision | recall | specificity |
|---|---|---|---|---|---|---|
| Experiment_98 fold_1 | 0.8125 | 0.816425 | 0.869565 | 0.869565 | 0.869565 | 0.666666 |
| Experiment_98 fold_2 | 0.65625 |
RMSprop
| name | acc | auc | f1 | precision | recall | specificity |
|---|---|---|---|---|---|---|
| Experiment_99 fold_1 | 0.90625 | 0.913043 | 0.930232 | 1.0 | 0.869565 | 1.0 |
| Experiment_99 fold_2 | 0.78125 | 0.822510 | 0.810810 | 0.9375 | 0.714285 | 0.909090 |
Adagrad
| name | acc | auc | f1 | precision | recall | specificity |
|---|---|---|---|---|---|---|
| Experiment_100 fold_1 | 0.78125 | |||||
| Experiment_100 fold_2 | 0.65625 |
还是改回MADGRAD优化器
做了点数据增强
| name | acc | auc | f1 | precision | recall | specificity |
|---|---|---|---|---|---|---|
| Experiment_101 fold_1 | 0.875 | 0.9565 | 0.916666 | 0.879999 | 0.956521 | 0.666666 |
| Experiment_101 fold_2 | 0.8125 | 0.7922 | 0.85 | 0.8947 | 0.8095 | 0.818181 |
| Experiment_101 fold_3 | 0.84375 | 0.886274 | 0.871794 | 0.772727 | 1.0 | 0.666666 |
| Experiment_101 fold_4 | 0.75 | |||||
| Experiment_101 fold_5 | 0.8125 | 0.8311 | 0.875 | 0.7777 | 1.0 | 0.4545 |
mamba: A2C切面的数据
echo_prime: A4C切面的数据
融合: 通道拼接
保留4*4*4的空间结构
损失还是asymmetric
| name | acc | auc | f1 | precision | recall | specificity |
|---|---|---|---|---|---|---|
| Experiment_92 fold_1 | 0.90625 | 0.971014 | 0.936170 | 0.916666 | 0.956521 | 0.7777 |
| Experiment_92 fold_2 | 0.84375 | 0.805194 | 0.888888 | 0.833333 | 0.952380 | 0.636363 |
| Experiment_92 fold_3 | 0.75 | 0.7960 | 0.7647 | 0.7647 | 0.7647 | 0.7333 |
| Experiment_92 fold_4 | 0.78125 | 0.826839 | 0.810810 | 0.9375 | 0.714285 | 0.909090 |
| Experiment_92 fold_5 | 0.84375 | 0.878787 | 0.878048 | 0.899999 | 0.857142 | 0.818181 |
| Experiment_92 | 0.825 | 效果拉跨 |
mamba: A4C切面的数据
echo_prime: A2C切面的数据
融合: 通道拼接
保留4*4*4的空间结构
损失还是asymmetric
但是使用的是dec0作为mamba的输出
| name | acc | auc | f1 | precision | recall | specificity |
|---|---|---|---|---|---|---|
| Experiment_93 fold_1 | 0.90625 | 0.942028 | 0.938775 | 0.884615 | 1.0 | 0.666666 |
| Experiment_93 fold_2 | 0.8125 | 0.792207 | 0.85 | 0.894736 | 0.809523 | 0.818181 |
| Experiment_93 fold_3 | 0.8125 | 0.870588 | 0.823529 | 0.823529 | 0.823529 | 0.8 |
| Experiment_93 fold_4 | 0.8125 | 0.805194 | 0.857142 | 0.857142 | 0.857142 | 0.727272 |
| Experiment_93 fold_5 | 0.84375 | 0.874458 | 0.878048 | 0.89999 | 0.857142 | 0.818181 |
| Experiment_93 | 0.8375 |
保留6*6*6的空间结构
| name | acc | auc | f1 | precision | recall | specificity |
|---|---|---|---|---|---|---|
| Experiment_93 fold_1 | 0.90625 | |||||
| Experiment_93 fold_3 | 0.75 |
mamba: A4C切面的数据
echo_prime: A2C切面的数据
融合: 通道拼接
保留4*4*4的空间结构
损失还是asymmetric
但是使用的是dec2作为mamba的输出
| name | acc | auc | f1 | precision | recall | specificity |
|---|---|---|---|---|---|---|
| Experiment_94 fold_1 | 0.90625 | 0.946859 | 0.936170 | 0.916666 | 0.956521 | 0.777777 |
| Experiment_94 fold_2 | 0.78125 | 0.796536 | 0.829268 | 0.85 | 0.809523 | 0.727272 |
| Experiment_94 fold_3 | 0.84375 | 0.925490 | 0.848484 | 0.875 | 0.823529 | 0.866666 |
| Experiment_94 fold_4 | 0.75 | 0.779220 | 0.809523 | 0.809523 | 0.809523 | 0.636363 |
| Experiment_94 fold_5 | 0.8125 | 0.861471 | 0.857142 | 0.857142 | 0.857142 | 0.727272 |
| name | acc | auc | f1 | precision | recall | specificity |
|---|---|---|---|---|---|---|
| Experiment_95 fold_1 1e-8 | 0.90625 | 0.9565 | 0.938775 | 0.884615 | 1.0 | 0.666666 |
| Experiment_95 fold_3 1e-8 | 0.8125 | 0.921568 | 0.849999 | 0.739130 | 1.0 | 0.6 |
3.2.2 mamba+echoprime text video
加入知识向量
mamba: A4C切面的数据
echo_prime: A2C切面的数据
都加入了知识向量
融合: 通道拼接
保留4*4*4的空间结构
学习率1e-6 b8 损失:bce
| name | acc | auc | f1 | precision | recall | specificity |
|---|---|---|---|---|---|---|
| Experiment_116 fold_1 | 0.90625 | 0.8067 | 0.9387 | 0.8846 | 1.0 | 0.6666 |
| Experiment_116 fold_2 | 0.78125 (0.81) | 0.818181 | 0.8108 | 0.9375 | 0.7142 | 0.9090 |
| Experiment_116 fold_3 | 0.8125 (0.84) | 0.8509 | 0.8 | 0.9230 | 0.7058 | 0.9333 |
| Experiment_116 fold_4 | 0.8125 | 0.8614 | 0.85 | 0.8947 | 0.8095 | 0.8181 |
| Experiment_116 fold_5 | 0.84375 | 0.8484 | 0.8837 | 0.8636 | 0.9047 | 0.7272 |
| Experiment_116 | 0.83125 |
| name | acc | auc | f1 | precision | recall | specificity |
|---|---|---|---|---|---|---|
| Experiment_127 fold_1 | 1 | |||||
| Experiment_127 fold_2 | ||||||
| Experiment_127 fold_3 | ||||||
| Experiment_127 fold_4 | ||||||
| Experiment_127 fold_5 | ||||||
| Experiment_127 |
使用dec2作为输出
| name | acc | auc | f1 | precision | recall | specificity |
|---|---|---|---|---|---|---|
| Experiment_126 fold_1 | 0.90625 | 0.8937 | 0.9387 | 0.8846 | 1.0 | 0.6666 |
| Experiment_126 fold_2 | 0.8125 | 0.8571 | 0.8571 | 0.8571 | 0.8571 | 0.7272 |
| Experiment_126 fold_3 | 0.75 | 0.8117 | 0.75 | 0.8 | 0.7058 | 0.8 |
| Experiment_126 fold_4 | 0.6875 | 0.7662 | 0.75 | 0.7894 | 0.7142 | 0.6363 |
| Experiment_126 fold_5 | 0.84375 | 0.8354 | 0.8718 | 0.9444 | 0.8095 | 0.9090 |
| Experiment_126 |
学习率1e-5 b8 损失:bce
| name | acc | auc | f1 | precision | recall | specificity |
|---|---|---|---|---|---|---|
| Experiment_125 fold_1 | 0.875 | 0.8743 | 0.9166 | 0.8799 | 0.9565 | 0.6666 |
| Experiment_125 fold_2 | 0.75 | 0.8051 | 0.7777 | 0.9333 | 0.6666 | 0.9090 |
| Experiment_125 fold_3 | 0.78125 | 0.8705 | 0.7407 | 1.0 | 0.5882 | 1.0 |
| Experiment_125 fold_4 | 0.71875 | 0.7445 | 0.7567 | 0.875 | 0.6666 | 0.8181 |
| Experiment_125 fold_5 | 0.84375 | 0.8311 | 0.8837 | 0.8636 | 0.9047 | 0.7272 |
| Experiment_125 |
损失:asymmetric
| name | acc | auc | f1 | precision | recall | specificity |
|---|---|---|---|---|---|---|
| Experiment_117 fold_1 | 0.90625 | 0.8405 | 0.9387 | 0.8846 | 1.0 | 0.6666 |
| Experiment_117 fold_2 | 0.75 | 0.7229 | 0.7777 | 0.9333 | 0.6666 | 0.9090 |
| Experiment_117 fold_3 | 0.8125 (0.84) | 0.8823 | 0.8421 | 0.7619 | 0.9411 | 0.6666 |
| Experiment_117 fold_4 | 0.8125 | 0.8528 | 0.8421 | 0.9411 | 0.7619 | 0.9090 |
| Experiment_117 fold_5 | 0.84375 | 0.8354 | 0.8837 | 0.8636 | 0.9047 | 0.7272 |
| Experiment_117 | 0.825 |
损失weighted_bce 2.0
| name | acc | auc | f1 | precision | recall | specificity |
|---|---|---|---|---|---|---|
| Experiment_118 fold_1 | 0.875 | 0.8937 | 0.9166 | 0.8799 | 0.9565 | 0.6666 |
| Experiment_118 fold_2 | 0.78125 | 0.818181 | 0.8205 | 0.8888 | 0.7619 | 0.8181 |
| Experiment_118 fold_3 | 0.8125 | 0.8431 | 0.8 | 0.9230 | 0.7058 | 0.9333 |
| Experiment_118 fold_4 | 0.75 | 0.8354 | 0.7894 | 0.8823 | 0.7142 | 0.8181 |
| Experiment_118 fold_5 | 0.84375 | 0.8441 | 0.8837 | 0.8636 | 0.9047 | 0.7272 |
| Experiment_118 | 0.8125 | 0.8469 | 0.8420 | 0.8875 | 0.7886 | 0.7931 |
损失weighted_bce 0.75
| name | acc | auc | f1 | precision | recall | specificity |
|---|---|---|---|---|---|---|
| Experiment_119 fold_1 | 0.90625 | 0.8550 | 0.9387 | 0.8846 | 1.0 | 0.6666 |
| Experiment_119 fold_2 | 0.78125 | 0.8138 | 0.8108 | 0.9375 | 0.7142 | 0.9090 |
| Experiment_119 fold_3 | 0.84375 | 0.9098 | 0.8571 | 0.8333 | 0.8823 | 0.8 |
| Experiment_119 fold_4 | 0.8125 | 0.8528 | 0.8571 | 0.8571 | 0.8571 | 0.7272 |
| Experiment_119 fold_5 | 0.8125 | 0.8528 | 0.8571 | 0.8571 | 0.8571 | 0.7272 |
| Experiment_119 | 0,83125 |
损失weighted_bce 0.5
| name | acc | auc | f1 | precision | recall | specificity |
|---|---|---|---|---|---|---|
| Experiment_120 fold_1 | 0.84375 | 0.8550 | 0.8936 | 0.875 | 0.9130 | 0.6666 |
| Experiment_120 fold_2 | 0.75 | 0.8268 | 0.7777 | 0.9333 | 0.6666 | 0.9090 |
| Experiment_120 fold_3 | 0.875 | 0.9058 | 0.8888 | 0.8421 | 0.9411 | 0.8 |
| Experiment_120 fold_4 | 0.75 | 0.8398 | 0.7894 | 0.8823 | 0.7142 | 0.8181 |
| Experiment_120 fold_5 | 0.78125 | 0.8398 | 0.8292 | 0.85 | 0.8095 | 0.7272 |
| Experiment_120 | 0.8 |
使用的dec0作为mamba的输出
学习率1e-6 b8 损失:bce
| name | acc | auc | f1 | precision | recall | specificity |
|---|---|---|---|---|---|---|
| Experiment_121 fold_1 | 0.875 | 0.9227 | 0.9166 | 0.8799 | 0.9565 | 0.6666 |
| Experiment_121 fold_2 | 0.8125 | 0.8051 | 0.875 | 0.7777 | 1.0 | 0.4545 |
| Experiment_121 fold_3 | 0.875 | 0.8862 | 0.8823 | 0.8823 | 0.8823 | 0.8666 |
| Experiment_121 fold_4 | 0.6875 | 0.6839 | 0.7222 | 0.8666 | 0.6190 | 0.8181 |
| Experiment_121 fold_5 | 0.875 | 0.8917 | 0.9047 | 0.9047 | 0.9047 | 0.8181 |
| Experiment_121 | 0.825 |
使用的dec0作为mamba的输出
学习率1e-6 b8 损失:asymmetric
| name | acc | auc | f1 | precision | recall | specificity |
|---|---|---|---|---|---|---|
| Experiment_122 fold_4 | 0.6875 |
学习率:1e-4
| name | acc | auc | f1 | precision | recall | specificity |
|---|---|---|---|---|---|---|
| Experiment_123 fold_1 | 0.875 | 0.8550 | 0.9166 | 0.8799 | 0.9565 | 0.6666 |
| Experiment_123 fold_2 | 0.75 | |||||
| Experiment_123 fold_3 | 0.84375 | |||||
| Experiment_123 fold_4 | 0.71875 | 0.7532 | 0.7428 | 0.9285 | 0.6190 | 0.9090 |
| Experiment_123 fold_5 | 0.8125 | |||||
| Experiment_123 |
学习率1e-4 b8 损失:bce 少加几层知识向量
| name | acc | auc | f1 | precision | recall | specificity |
|---|---|---|---|---|---|---|
| Experiment_124 fold_1 | 0.90625 | 0.8599 | 0.9387 | 0.8846 | 1.0 | 0.6666 |
| Experiment_124 fold_2 | 0.78125 | 0.8 | 0.8205 | 0.8888 | 0.7619 | 0.8181 |
| Experiment_124 fold_3 | 0.84375 | 0.9568 | 0.8387 | 0.9285 | 0.7647 | 0.9333 |
| Experiment_124 fold_4 | 0.71875 | 0.7532 | 0.7428 | 0.9285 | 0.6190 | 0.9090 |
| Experiment_124 fold_5 | 0.8125 | 0.8311 | 0.8571 | 0.8571 | 0.8571 | 0.7272 |
| Experiment_124 | 0.8125 |
4. sota实验
4.1 camus
| name | acc | auc | f1 | precision | recall | specificity |
|---|---|---|---|---|---|---|
| BI-Mamba | 78.75 | 73.45 | 64.87 | 85.01 | 54.85 | / |
| CARL | 83.75 | 60.33 | 73.42 | 85.56 | 67.42 | / |
| MV-Swin-T | 62.50 | 57.14 | 60.42 | 61.65 | 62.17 | / |
| CTT-Net | 62.50 | 70.04 | 70.70 | 62.96 | 82.62 | / |
| MIMamba | 85.00 | 83.15 | 77.78 | 84.00 | 72.41 | 92.16 |
4.2 hmc
5. 示意图
Exp_115可视化ROC
